gavin ruane

student

1.1

Algebraic Expressions and Factoring

Expanding Polynomials

An algebraic expression is a polynomial of the form \( a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0 \) where \(a_0\), \(a_1\), \(\ldots\), \(a_n\) are real numbers and \(n\) is non-negative. If \(a_n\neq0\), the degree of the polynomial is \(n\).

The FOIL method is a way to expand a factored polynomal.

  1. Multiply (expand) this polynomial: \( (2x+1)(3x-5) \)
  2. \[\begin{align} &(2x*3x)+(2x*-5)+(1*3x)+(1*-5) \\ &6x^2-10x+3x-5 \\ &6x^2-7x-5 \end{align}\]

Special Product Formulas

These special product formulas can be used to expand a factored polynomial that follows one of the specified patterns.

\( (A-B)(A+B) \) \( A^2-B^2 \)
\( (A+B)^2 \) \( A^2+2AB+B^2 \)
\( (A-B)^2 \) \( A^2-2AB+B^2 \)
\( (A+B)^3 \) \( A^3+3A^2B+3AB^2+B^2 \)
\( (A-B)^3 \) \( A^3-3A^2B+3AB^2-B^3 \)
  1. Expand this expression: \( (3x+5)^2 \)
  2. \[\begin{align} A&=3x \\ B&=5 \end{align}\] \[\begin{align} &(3x)^2 + 2(3x)(5) + 5^2 \\ &9x^2+30x+25 \end{align}\]
  3. Expand this expression: \( (x^2-2)^3 \)
  4. \[\begin{align} A&=x^2 \\ B&=2 \end{align}\] \[\begin{align} &(x^2)^3-3(x^2)^2(2)+3(x^2)(2)^2-2^3 \\ &x^6-6x^4+12x^2+8 \end{align}\]

Special Factoring Formulas

These special factoring formulas can be used to factor an expanded polynomial that follows one of the specified patterns.

\( A^2-B^2 \) \( (A-B)(A+B) \)
\( A^2+2AB+B^2 \) \( (A+B)^2 \)
\( A^2-2AB+B^2 \) \( (A-B)^2 \)
\( A^3-B^3 \) \( (A-B)(A^2+BA+B^2) \)
\( A^3+B^3 \) \( (A+B)(A^2-BA+B^2) \)
  1. Factor this expression: \( 4x^2-25 \)
  2. \[\begin{align} &(2x^2)-(5)^2 \\ &(2x-5)(2x+5) \end{align}\]
  3. Factor this expression: \( 27x^3-1 \)
  4. \[\begin{align} &(3x)^3-(1)^3 \\ &(3x-1)[(3x)^2+1(3x)+1^2] \\ &(3x-1)(9x^2+3x+1) \end{align}\]

Exponent Laws

When working with polynomials, you may need to recall how to combine, expand, and utilize exponents. These exponent laws determine the functionality of exponents and their bases.

\( a^m a^n \) \( a^{m+n} \)
\( (a^m)^n \) \( a^{mn} \)
\( (ab)^n \) \( a^n b^n \)
\( \frac{a^m}{a^n} \) \( a^{m-n} \)
\( (\frac{a}{b})^n \) \( \frac{a^n}{b^n} \)
\( (\frac{a}{b})^{-n} \) \( (\frac{b}{a})^n \)
\( \frac{a^{-n}}{b^{-m}} \) \( \frac{b^m}{a^n} \)